(Data in thousand metric tons, copper content, unless otherwise specified)

Domestic Production and Use: In 2023, the recoverable copper content of U.S. mine production was an estimated 1.1 million tons, a decrease of 11% from that in 2022, and was valued at an estimated \$9.9 billion, 11% less than \$11.2 billion in 2022. Arizona was the leading copper-producing State and accounted for approximately 70% of domestic output; copper was also mined in Michigan, Missouri, Montana, Nevada, New Mexico, and Utah. Copper was recovered or processed at 25 mines (17 of which accounted for more than 99% of mine production), 2 primary smelters, 1 secondary smelter, 2 primary electrolytic refineries, 14 electrowon refineries, and 3 secondary fire refineries. A new secondary copper refinery was expected to startup by yearend. Refined copper and scrap were consumed at about 30 brass mills, 14 rod mills, and 500 foundries and miscellaneous manufacturers. According to the Copper Development Association, copper and copper alloy products were used in building construction, 45%; electrical and electronic products, 22%; transportation equipment, 16%; consumer and general products, 10%; and industrial machinery and equipment, 7%.

<u>Salient Statistics—United States</u> : Production:	<u>2019</u>	<u>2020</u>	<u>2021</u>	<u>2022</u>	<u>2023</u> °
Mine, recoverable	1,260	1,200	1,230	1,230	1,100
Refinery:	1,200	1,200	1,200	.,200	1,100
Primary (from ore)	985	872	922	912	850
Secondary (from scrap)	44	43	49	40	40
Copper recovered from old (post-consumer) scrap ¹	166	161	157	^e 150	150
Imports for consumption:		_			_
Ore and concentrates	27	2	11	_12	4
Refined	663	676	919	732	890
Exports:	050	000	044	050	050
Ore and concentrates	356	383	344	353	350
Refined	125	41	48	28	30
Consumption:	1 0 1 0	1 600	1 750	4 700	4 700
Reported, refined copper	1,810	1,680	1,750	1,720	1,700
Apparent, primary refined copper and copper from old scrap ² Price, annual average, cents per pound:	1,820	1,660	1,950	1,800	1,800
U.S. producer, cathode (COMEX + premium)	279.6	286.7	432.3	410.8	400
COMEX, high-grade, first position	279.0	279.9	424.3	400.7	390
London Metal Exchange, grade A, cash	272.4	279.8	422.5	399.8	390
Stocks, refined, held by U.S. producers, consumers, and metal	110	118	117	83	100
exchanges, yearend	110	110		00	100
Employment, mine and plant, number	12,000	11,000	11,400	12,000	12,000
Net import reliance ³ as a percentage of apparent consumption	37	38	45	41	46

<u>Recycling</u>: Old (post-consumer) scrap, converted to refined metal, alloys, and other forms, provided an estimated 150,000 tons of copper in 2023, and an estimated 700,000 tons of copper was recovered from new (manufacturing) scrap derived from fabricating operations. Of the total copper recovered from scrap, brass and wire-rod mills accounted for approximately 80%. Copper recovered from scrap contributed 33% of the U.S. copper supply.⁴

Import Sources (2019–22): Copper content of blister and anodes: Finland, 93%; and other, 7%. Copper content of matte, ash, and precipitates: Canada, 37%; Belgium, 21%; Japan, 16%; Spain, 11%; and other, 15%. Copper content of ore and concentrates: Mexico, 52%; Canada, 48%; and other, <1%. Copper content of scrap: Canada, 48%; Mexico, 40%; and other, 12%. Refined copper: Chile, 64%; Canada, 18%; Mexico, 11%; and other, 7%. Refined copper accounted for 86% of all unmanufactured copper imports.

<u>Tariff</u> : Item	Number	Normal Trade Relations <u>12–31–23</u>
Copper ore and concentrates, copper content	2603.00.0010	1.7¢/kg on lead content.
Unrefined copper anodes	7402.00.0000	Free.
Refined copper and alloys, unwrought	7403.00.0000	1% ad valorem.
Copper scrap	7404.00.0000	Free.
Copper wire rod	7408.11.0000	1% or 3% ad valorem.

Depletion Allowance: 15% (domestic), 14% (foreign).

Government Stockpile: None.

Prepared by Daniel M. Flanagan [(703) 648–7726, dflanagan@usgs.gov]

COPPER

Events, Trends, and Issues: In 2023, production decreased at a majority of copper mines in the United States, and domestic mined copper output declined by an estimated 11% from that in 2022. At the Bingham Canyon Mine in Utah, copper production was affected by record-high snowfall in the first quarter and a conveyor belt motor failure that resulted in the concentrator operating at a reduced capacity for several months. At the Robinson Mine in Nevada, low-grade copper ores were processed owing to planned mine sequencing. Production also decreased at multiple mines in Arizona and New Mexico because of unplanned maintenance and lower ore grades and mining rates. The rampups of the Gunnison Mine in Arizona and the Pumpkin Hollow Mine in Nevada continued to be delayed, but ore processing restarted at Pumpkin Hollow in October following a suspension of over a year to address geotechnical challenges. Copper production at U.S. refineries decreased by an estimated 7% in 2023 compared with that in 2022 because of a major rebuild of the smelter and electrolytic refinery near Salt Lake City, UT, from May to September. A new refinery in Kentucky designed to produce copper cathodes from scrap was anticipated to begin operating by yearend 2023, and at least three other domestic facilities that would recover copper from scrap in the form of anodes or cathodes were expected to start within the next several years.

The annual average COMEX copper price was projected to be about \$3.90 per pound in 2023, 3% less than that in 2022. Analysts attributed the decreased price primarily to strengthening of the U.S. dollar relative to other global currencies and concerns regarding economic growth in China and inflation.

<u>World Mine and Refinery Production and Reserves</u>: Reserves for Australia, China, Congo (Kinshasa), Peru, Poland, Russia, the United States, Zambia, and "Other countries" were revised based on company and Government reports.

			Refinery pr 2022	oduction 2023°	Reserves ⁵
United States	1,230	1,100	952	890	50,000
Australia	819	810	401	450	⁶ 100,000
Canada	520	480	278	310	7,600
Chile	5,330	5,000	2,150	2,000	190,000
China	1,940	1,700	11,100	12,000	41,000
Congo (Kinshasa)	2,350	2,500	1,770	1,900	80,000
Germany	·	·	609	610	· <u> </u>
Indonesia	941	840	310	200	24,000
Japan	_	_	1,550	1,500	·
Kazakhstan	593	600	494	440	20,000
Korea, Republic of	_	_	638	620	·
Mexico	754	750	486	480	53,000
Peru	2,450	2,600	391	400	120,000
Poland	393	400	586	590	34,000
Russia	^e 936	910	^e 1,010	1,000	80,000
Zambia	797	760	349	380	21,000
Other countries	2,850	3,100	2,830	2,900	180,000
World total (rounded)	21,900	22,000	25,900	27,000	1,000,000

World Resources:⁵ The most recent U.S. Geological Survey assessment of global copper resources indicated that, as of 2015, identified resources contained 2.1 billion tons of copper and undiscovered resources contained an estimated 3.5 billion tons.⁷

<u>Substitutes</u>: Aluminum substitutes for copper in automobile radiators, cooling and refrigeration tube, electrical equipment, and power cable. Optical fiber substitutes for copper in telecommunications applications, and plastics substitute for copper in drain pipe, plumbing fixtures, and water pipe. Titanium and steel are used in heat exchangers.

^eEstimated. — Zero.

¹Copper converted to refined metal, alloys, and other forms by brass and wire-rod mills, foundries, refineries, and other manufacturers.

²Primary refined production + copper recovered from old scrap + refined imports – refined exports ± adjustments for refined copper stock changes. ³Defined as refined imports – refined exports ± adjustments for refined copper stock changes.

⁴Primary refined production + copper recovered from old and new scrap + refined imports – refined exports ± adjustments for refined copper stock changes.

⁵See Appendix C for resource and reserve definitions and information concerning data sources.

⁶For Australia, Joint Ore Reserves Committee-compliant or equivalent reserves were 27 million tons.

⁷Source: Hammarstrom, J.M., Zientek, M.L., Parks, H.L., Dicken, C.L., and the U.S. Geological Survey Global Copper Mineral Resource Assessment Team, 2019, Assessment of undiscovered copper resources of the world, 2015 (ver.1.1, May 24, 2019): U.S. Geological Survey Scientific Investigations Report 2018–5160, 619 p., https://doi.org/10.3133/sir20185160.